Acute Kidney Injury and the role of cell-cycle arrest biomarkers

Bibliography

May 2018
Acute Kidney Injury (AKI) is prevalent, deadly and costly

1.1 Lewington A, Cerda J, Mehta R.
Raising awareness of acute kidney injury: a global perspective of a silent killer.
Kidney International 2013;84,457–467

1.2 Chawla LS, Amdur RL, Shaw AD et al.
Association between AKI and Long-Term Renal and Cardiovascular Outcomes in United States Veterans.

1.3 Mehta RL, Bouchard J, Soroko SB et al.
Sepsis as a cause and consequence of acute kidney injury: Program to Improve Care in Acute Renal Disease.

1.4 Bihorac A, Brennan M, Stat M et al.
National surgical quality improvement program underestimates the risk associated with mild and moderate postoperative acute kidney injury.

1.5 Hobson C, Tezcan O, Kuxhausen A et al.
Cost and Mortality Associated With Postoperative Acute Kidney Injury.
Ann Surg 2014;00:1–8. DOI: 10.1097/SLA.0000000000000732

1.6 Brown JR, Parikh CR, Ross CS, et al.
Impact of perioperative acute kidney injury as a severity index for thirty-day readmission after cardiac surgery.

1.7 Dasta J, Kane-Gill S, Durtschi A, et al.
Costs and outcomes of acute kidney injury (AKI) following cardiac surgery.
Nephrology Dialysis Transplantation 2008. DOI: 10.1093/ndt/gfm908

1.8 Alshaikh, Husain N. et al.
Financial Impact Of Acute Kidney Injury After Cardiac Operations In The United States.

Discovery and validation of cell-cycle arrest biomarkers

Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury.
Clinical cut-offs

3.1 Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. 

3.2 Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. 
Hoste EA, McCullough PA, Kashani K, et al. 

3.3 Tissue Inhibitor Metalloproteinase-2 (TIMP-2)IGF-Binding Protein-7 (IGFBP7) Levels Are Associated with Adverse Long-Term Outcomes in Patients with AKI. 

Cell-cycle arrest biomarkers into clinical practice in surgical and sepsis patients

4.1 Cell-cycle arrest and acute kidney injury: the light and the dark sides. 
Kellum JA, Chawla LS. 

4.2 Acute Kidney Injury Risk Assessment and the Nephrology Rapid Response Team. 
Rizo-Topete LM, Rosner MH, Ronco C. 

4.3 Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. 

4.4 Biomarker-guided Intervention to Prevent Acute Kidney Injury After Major Surgery. 
Göcze I, Jauch D, MD, Götz M et al. 

4.5 Urinary Tissue Inhibitor of Metalloproteinase-2 and Insulin-Like Growth Factor-Binding Protein 7 for Risk Stratification of Acute Kidney Injury in Patients With Sepsis. 
Honore PM, Nguyen HB, MD, Gong M et al. 
Critical Care Medicine October 2016, Volume 44 , Number 10. DOI: 10.1097 CCM.0000000000001827
Integration of cell-cycle arrest biomarkers into the clinical management of Acute Kidney Disease


4.7 Levante, Chiara et al. Routine Adoption Of TIMP2 And IGFBP7 Biomarkers In Cardiac Surgery For Early Identification Of Acute Kidney Injury. The International Journal of Artificial Organs 2017. DOI: 10.5301/ijao.5000661


5.3 Ostermann, Marlies et al. Kinetics Of Urinary Cell Cycle Arrest Markers For Acute Kidney Injury Following Exposure To Potential Renal Insults. Critical Care Medicine 2018. DOI: 10.1097/ccm.0000000000002847